Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616141

RESUMO

One of the most important factors regulating the distribution and abundance of seaweeds is desiccation, triggered mainly by tidal changes and climatic variation. Porphyra and Pyropia species have evolved multiple strategies to tolerate desiccation stress; however, how these tolerance strategies differ in these species inhabiting different latitudes is still unknown. In this context, we analyzed, in situ, the physiological responses of these species (collected from 18° S to 41° S along the Chilean coast) to desiccation stress using biochemical and molecular analyses. The hyper-arid terrestrial climate of northern Chile, with high evaporation and lack of constant rain determines a very steep increase in desiccation stress in the upper intertidal during low tide for these species. Accordingly, the results showed that, in comparison with the southernmost populations, the Porphyra/Pyropia species from the north zone of Chile (18°-30° S) exhibited higher contents of lipoperoxide and carbonyls (1.6-1.9 fold) together with higher enzymatic activities, including ascorbate peroxidase, catalase, peroxiredoxin, and thioredoxin (2-3-fold). In addition, a substantial expression of cat, prx, and trx transcripts during desiccation was demonstrated, mainly in the northernmost populations. These results provide evidence of (i) significant activation of antioxidant enzymes and transcripts (principally cat and prx); (ii) participation of phenolic antioxidant compounds as a highly plastic physiological strategy to cope with desiccation; and (iii) the activation of the tolerance responses was affected by species latitudinal distribution. Thus, for the first time, this study integrated the biochemical and genetic responses of diverse Porphyra/Pyropia species to better understand their physiological dynamics of tolerance over a wide latitudinal range.

2.
Photochem Photobiol ; 92(3): 455-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26896058

RESUMO

The endemic Antarctic brown macroalga Desmarestia anceps is strongly shade-adapted, but shows also a high capacity to cope with different environmental stressors, e.g. UV radiation and temperature. Therefore, this species colonizes wide depth gradients, which are characterized by changing environmental conditions. In this study, we examine whether the different physiological abilities allowing D. anceps to grow across a wide depth range is determined by high levels of phlorotannins. Photosynthesis, measured by PAM-fluorometry, the contents of soluble phlorotannins, antioxidant capacities of field grown were analyzed in response to different conditions of radiation (PAR and PAR + UV) and temperature (2, 7 and 12°C). The results show that maximal quantum of fluorescence (Fv /Fm ) decreased with increasing doses of UV radiation, but remained unaffected by temperature. High levels of soluble phlorotannins were detected and confirmed by microscopic observation revealing the abundance of large physodes. Exposure to UV radiation and elevated temperature showed that phlorotannins were not inducible by UV but increased at 12°C. ROS scavenging capacity was positively correlated with the contents of phlorotannins. In general, highest contents of phlorotannins were correlated with the lowest inhibition of Fv /Fm in all experimental treatments, highlighting the UV-protective role of these compounds in D. anceps.


Assuntos
Phaeophyceae/fisiologia , Phaeophyceae/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Taninos/metabolismo , Temperatura , Raios Ultravioleta , Regiões Antárticas , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...